Tilman Flock is awarded the Max Perutz Student Prize 2015

Big congratulations to Tilman to win this year’s Max Perutz Student Prize.

The Max Perutz Student Prize is awarded annually for outstanding work performed at the LMB prior to the award of a PhD. The 2015 prize has been awarded to Tilman Flock, for his comprehensive computational analysis of GTP-binding proteins (G proteins), revealing the universal nature of their interactions and activation.

Tilman, a third year PhD student in the group of Madan Babu in the Structural Studies Division, undertook a systematic analysis of over 80 structures and 950 sequences of G proteins from different species to reveal how the core mechanism of activation and recognition is conserved, even while new specific interactions evolve. In humans there are over 800 G protein-coupled receptors which, upon binding of an extracellular ligand, activate one or more of 16 different G proteins by triggering the exchange of GDP for GTP, thus initiating a series of signalling pathways. It is these receptors that allow us to smell different chemicals, respond to adrenalin, and sense neurotransmitters in the brain, amongst many other functions. More than 30% of all prescribed small molecule drugs act by stimulating or inhibiting them. Since the 1980’s, there have been over 11,000 publications relating to how G proteins work. Tilman’s elegant methodological approach unifies a vast amount of data, providing a framework for the whole field. It is a general approach that can be extended to other proteins, and it shows the power of large-scale analysis of the ever-growing mass of published data.

See Flock et al, Nature 524, 173-179 (2015).

The research student prize is awarded by the Max Perutz Fund. The Fund was established for the promotion and advancement of education and research in molecular biology and allied biomedical sciences.

Photo and text are taken from the LMB website.

Posted in Uncategorized | Comments Off

Editorial overview: Linking protein sequence and structural changes to function in the era of next-generation sequencing

COSB issue is now published! You can find the article by Anne R Panchenko and M. Madan Babu here.

Posted in Uncategorized | Comments Off

Probing Gαi1 protein activation at single-amino acid resolution

We present comprehensive maps at single-amino acid resolution of the residues stabilizing the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-β3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-β6. Key residues in this cluster are Y320, which is crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the interdomain interface and release of GDP. The paper by Dawei Sun, Tilman Flock et al can be viewed here.

Posted in Uncategorized | Comments Off

Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats in the yeast transcriptional regulator Ssn6 (Cyc8) result in systematic, repeat-length-dependent variation in expression of target genes that result in direct phenotypic changes. The function of Ssn6 increases with its repeat number until a certain threshold where further expansion leads to aggregation. Quantitative proteomic analysis reveals that the Ssn6 repeats affect its solubility and interactions with Tup1 and other regulators. Thus, Q-rich repeats are dynamic functional domains that modulate a regulator’s innate function, with the inherent risk of pathogenic repeat expansions. The paper by Rita Gemayel, Sreenivas Chavali et al can be viewed here.

Posted in Uncategorized | Comments Off

Dr M. Madan Babu awarded the Royal Society Francis Crick Medal and Lecture 2016

Many congratulations to Madan to be awarded the prestigious the Royal Society Francis Crick Medal and Lecture 2016. Madan will deliver the prize lecture in December 2016. Here is the detailed information as shown in the LMB website. You can get more information about the Royal Society Awards Francis Crick Medal here.

Posted in Uncategorized | Comments Off

Universal allosteric mechanism for Ga activation by GPCRs

G protein-coupled receptors (GPCRs) allosterically activate heterotrimeric G proteins and trigger GDP release. Given that there are 800 human GPCRs and 16 different Ga genes, this raises the question of whether a universal allosteric mechanism governs Ga activation. Here we show that different GPCRs interact with and activate Ga proteins through a highly conserved mechanism. Comparison of Ga with the small G protein Ras reveals how the evolution of short segments that undergo disorder-to-order transitions can decouple regions important for allosteric activation from receptor binding specificity. This might explain how the GPCR–Ga system diversified rapidly, while conserving the allosteric activation mechanism. The paper by Tilman Flock et al can be viewed here.

Posted in Uncategorized | Comments Off

Sequence composition of disordered regions fine-tunes protein half-life

The proteasome controls the concentrations of most proteins in eukaryotic cells. It recognizes its protein substrates through ubiquitin tags and initiates degradation at disordered regions within the substrate. Here we show that the proteasome has pronounced preferences for the amino acid sequence of the regions at which it initiates degradation. Specifically, proteins in which the initiation regions have biased amino acid compositions show longer half-lives in yeast than proteins with unbiased sequences in the regions. The relationship is also observed on a genomic scale in mouse cells. These preferences affect the degradation rates of proteins in vitro, can explain the unexpected stability of natural proteins in yeast and may affect the accumulation of toxic proteins in disease. We propose that the proteasome’s sequence preferences provide a second component to the degradation code and may fine-tune protein half-life in cells.The paper by Susan Fishbain, Sreenivas Chavali et al can be viewed here.

Posted in Uncategorized | Comments Off

Proteome response at the edge of protein aggregation

Proteins adopt defined structures and are crucial to most cellular functions. Their misfolding and aggregation is associated with numerous degenerative human disorders such as type II diabetes, Huntington’s or Alzheimer’s diseases. Here, we aim to understand why cells promote the formation of protein foci. Comparison of two amyloid-b-peptide variants, mostly insoluble but differently recruited by the cell (inclusion body versus diffused), reveals small differences in cell fitness and proteome response. We suggest that the levels of oxidative stress act as a sensor to trigger protein recruitment into foci. Our data support a common cytoplasmic response being able to discern and react to the specific properties of polypeptides. The paper by Natalia Sanchez de Groot can be viewed here.

Posted in Uncategorized | Comments Off

Optimizing membrane-protein biogenesis through nonoptimal-codon usage

Two studies provide insights into the distinct strategies used by prokaryotes and eukaryotes to pause translation in
order to facilitate cotranslational targeting of membrane proteins to the translocon. The review by Alexey Morgunov can be viewed here.

Posted in Uncategorized | Comments Off

Colworth Medal Lecture 2014

Madan is presenting the 2014 Colworth Medal Lecture. The lecture will be held on Monday 1 December 2014 at Charles Darwin House, London. Click here to view details.

Posted in Uncategorized | Comments Off